A Taylor - Galerkin Finite Element Algorithm for Transient Nonlinear Thermal

نویسنده

  • Pramote Dechaumphai
چکیده

A Tay lo r -Ga le rk in f i n i t e element method f o r s o l v i n g large, non l i nea r t h e r m a l s t r u c t u r a l problems i s presented. The a l g o r i t h m i s formulated f o r coupled t r a n s i e n t and uncoupled quasi s t a t i c thermal s t r u c t u r a l problems. V e c t o r i z i n g s t r a t e g i e s ensure computat ional e f f i c i e n c y . Two a p p l i c a t i o n s demonstrate the v a l i d i t y o f the approach f o r ana lyz ing t r a n s i e n t and quasi s t a t i c thermal s t r u c t u r a l problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material

This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...

متن کامل

One-step Taylor–Galerkin methods for convection–diffusion problems

Third and fourth order Taylor–Galerkin schemes have shown to be efficient finite element schemes for the numerical simulation of time-dependent convective transport problems. By contrast, the application of higher-order Taylor–Galerkin schemes to mixed problems describing transient transport by both convection and diffusion appears to be much more difficult. In this paper we develop two new Tay...

متن کامل

A Comparative Study of Least-Squares and the Weak-Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams

In this paper, a comparison of weak-form Galerkin and least-squares finite element models of Timoshenko beam theory with the von Kármán strains is presented. Computational characteristics of the two models and the influence of the polynomial orders used on the relative accuracies of the two models are discussed. The degree of approximation functions used varied from linear to the 5th order. In ...

متن کامل

Nonlinear Model Reduction Strategies For Rapid Thermal Processing Systems - Semiconductor Manufacturing, IEEE Transactions on

We present a systematic method for developing low order nonlinear models from physically based, large scale finite element models of rapid thermal processing (RTP) systems. These low order models are extracted from transient results of a detailed finite element model using the proper orthogonal decomposition (POD) method. Eigenfunctions obtained from the POD method are then used as basis functi...

متن کامل

Time-dependent algorithms for viscoelastic flow: bridge between finite-volume and finite-element methodology

This article considers transient, planar Poiseuille flows for viscoelastic fluids. We propose a novel time-dependent hybrid finite volume (fv)/finite element (fe) algorithm. This approach combines a Taylor-Galerkin fe-treatment for mass and momentum conservation equations, with a cell-vertex fv-discretisation of the hyperbolic stress constitutive equation. A consistent formulation for the const...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003